ArcheoVLM
Technical Architecture
Comprehensive technical stack and implementation details
2.1 Core Technologies
Platform & Language
Python 3.10+
Google Cloud Platform
GKE Autopilot
Primary Data Source
"LiDAR Surveys over Selected Forest Research Sites, Brazilian Amazon, 2008-2018" (ORNL DAAC)
2.2 Key Libraries & APIs
Comprehensive technology stack organized by domain
Geospatial Processing
• GeoPandas, Shapely
• Rasterio, Xarray
• PDAL, Laspy
• rvt-py (Relief Visualization)
Machine Learning
• PyTorch, Transformers
• Scikit-learn
• Ultralytics (YOLO)
• OpenAI GPT-4V API
Data & Cloud
• Pandas, NumPy
• google-cloud-storage
• Google Earth Engine API
• ALOS-PALSAR & NISAR
NLP & Geoparsing
• spaCy, GeospaCy
• GeoNorm
• Historical text processing
Visualization
• Folium
• Streamlit
• Interactive dashboards
Standards
• PEP 8 compliance
• Type hinting
• Comprehensive logging
• config.yaml management
2.3 Project Standards
Code quality and configuration management
Code Quality
- • PEP 8 compliance
- • Comprehensive logging
- • Type hinting
- • Robust error handling
Configuration
- • Central config.yaml
- • File path management
- • Model parameters
- • API key handling
Modularity
- • Distinct modules per phase
- • Well-documented classes
- • Reusable components
- • Clear interfaces
Data Processing Pipeline
End-to-end workflow architecture
Input
Raw LiDAR (.laz files)
~3,154 files
Processing
GKE Autopilot batch jobs
Scalable
Output
Verified site database
Georeferenced
Data flows through collaborative triage → LiDAR processing → AI detection → multi-modal verification → expert review